
PHYSICAL REVIEW E 67, 016201 ~2003!
Chaos based on Riemannian geometric approach to Abelian-Higgs dynamical system
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Physics Department, Department of Acoustic Design, Kyushu Institute of Design, Shiobaru, Fukuoka, 815-8540, Japan

~Received 18 June 2002; published 3 January 2003!

Based on the Riemannian geometric approach, we study chaos of the Abelian-Higgs dynamical system
derived from a classical field equation consisting of a spatially homogeneous Abelian gauge field and Higgs
field. Using the global indicator of chaos formulated by the sectional curvature of the ambient manifold, we
show that this approach brings the same qualitative and quantitative information about order and chaos as has
been provided by the Lyapunov exponents in the conventional and phenomenological approach. We confirm
that the mechanism of chaos is a parametric instability of the system. By analyzing a close relation between the
sectional curvature and the Gaussian curvature, we point out that the Toda-Brumer criterion becomes a suffi-
cient condition to the criterion based on this geometric approach as to the stability condition.
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There has long been an investigation in chaos of class
field theories such as the pure Yang-Mills theories@1#, the
Yang-Mills-Higgs ~YMH ! theories @2,3#, and the Abelian
gauge-Higgs~AH! theories@4# in order to understand gener
properties of their classical solutions. It has been shown
the classical solutions in the YMH and AH theories exhi
an order-to-chaos transition, i.e., a system has a thres
from order to chaos as the strength of the perturbation to
system increases. This phenomenon has been studied i
hope that it may provide additional knowledge about
vacuum structure of these field theories@5#. The chaos is
detected by studying the instability of the system which
evolving with time after being perturbed initially. A quant
tative characterization of chaos is mainly provided by
Lyapunov exponents of a given trajectory, which are
mean exponential rate of the divergence of trajectories
rounding it.

The stability or instability of the trajectory depends on t
curvature of the manifold on which the trajectory is define
In the conventional approach based on the abstract erg
theory, the hyperbolicity of the manifold, i.e., the negati
curvature manifold, provides an explanation of the origin
chaos@6#. Since the study of the stability of the system nee
the information on the evolution of the perturbations of
given trajectory, the numerical simulation plays a central r
and many numerical studies have been carried out by u
algorithms under this conventional and phenomenolog
approach. The result of the numerical simulation, howev
generally depends on the theory used for constructing
algorithms of computations. Many works so far have be
done in almost the same theoretical framework based on
ergodic theory. Thus it must be important to study the d
namical models of the classical field theories from an
proach different from the conventional one in order to exa
ine the validity of the results on order and chaos obtained
far.

The purpose of this paper is to study the chaos of
spatially homogeneous model of the AH theory from a R
mannian geometric approach@7,8#. This approach is being
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recently advocated to investigate the mechanism of the o
of chaos in the Hamiltonian systems and this has been
plied to particular systems such as the He´non-Heiles system
@8# and the homogeneous YMH system@9#. Basic idea of this
approach starts with a picture that the trajectories of a
namical system can be viewed as geodesics on a Rieman
manifold endowed with a suitable metric. Based on this
proach, the chaos stems from a parametric instability du
positive curvature fluctuations along the geodesics of
configuration space manifold. This mechanism is quite d
ferent from that based on the hyperbolicity in the conve
tional approach. Thus it is very interesting and important
study whether or not the Riemannian geometrical appro
brings the results consistent with those on chaos of the
dynamical system that have been provided by numer
studies in the conventional approach.

Let us begin with the Lagrangian density of the AH fie
theory given by@10#

L52 1
4 FmnFmn1~Dmf!* ~Dmf!2V~f!, ~1!

where the field strengthFmn5]mAn2]nAm and the covariant
derivative Dmf5]mf1 iAmf. The Higgs potential is
V(f)5k/4(ufu221)2. As we have rescaled both the ele
tric charge and the symmetry-breaking scale to unity in
formulation, we have only the coupling constantk as the
remaining parameter. The spatially homogeneous approxi
tion assumes that the field depends only on timet so that
]kAk50 and]kf50 hold in Eq.~1!, wherek51,2,3. We
assumeAk(t)5q1(t) for all k components of the gauge fiel
and f(t)5q2(t)exp(iu) for the Higgs field. Under this ap
proximation in addition to the gauge condition ofA050, we
obtain the nonlinear dynamical system described by
Hamiltonian as

H~p,q!5 1
2 ~p1

21p2
2!1V~q1 ,q2!, ~2!

V~q!5 1
2 q1

2q2
21

k

4
~q2

221!2, ~3!
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wherep5(p1 ,p2), q5(q1 ,q2), andp5q̇. In the Riemann-
ian geometric approach@8#, the sectional curvatureK (2), de-
fined as

K (2)~p,q!5
1

2~E2V! F ]2V

]q1
2

p2
21

]2V

]q2
2

p1
222

]2V

]q1]q2
p1p2G ,

~4!

plays a central role to study the dynamical behavior o
system with two degrees of freedom. ThisK (2) controls the
stability of the Jacobi-Levi-Civita~JLC! equation for geode-
sic spread. Since the instability of the system stems from
condition of K (2),0, the global indicator of the order-to
chaos transition is the integral^K (2)

(2) & of the negative values
assumed byK (2) over a constant energy surfaceSE , which
is defined by

^K (2)
(2) &5

1

A~SE!
E

SE

dsEK (2)
(2) 5

1

A~SE!
E dpdqd@H~p,q!

2E#Q~2K (2)!K (2)~p,q!, ~5!

whereQ is the step function, i.e.,Q(x)50 for x,0 while
Q(x)51 for x>1. The areaA(SE) in Eq. ~5! is given by

A~SE!5E
SE

dsE5E dpdqd@H~p,q!2E#. ~6!

It should be noted that this quantity^K (2)
(2) & depends only on

the geometric property of the ambient manifold, and it do
not require any numerical integration of the equations
motion involved in the dynamics.

Let us first study this global indicator̂K (2)
(2) &. The sec-

tional curvatureK (2) corresponding to the AH dynamica
system of Eqs.~2! and ~3! is given by

K (2)~p,q!5
1

p1
21p2

2 @q2
2p2

21~q1
213kq2

22k!p1
2

24q1q2p1p2#. ~7!

The Hamiltonian~2! describes the motion of a particle in
two-dimensional potential wellV(q1 ,q2). The potential con-
tour defined byV5E is determined once the coupling co
stant k is given. We introduce the parameterQ[4E/k to
characterize the potential contour. The contour is clo
whenQ<1, while the contour is open to theq1-axis direc-
tion whenQ.1. The contour of the potential for 0.05<Q
<1.0 inq2.0 region is shown for the case ofk51.0 in Fig.
1. Thus the system is completely described byQ andk and
the calculation of̂ K (2)

(2) & has to be done under the conditio
of Q<1 to confine the trajectories in a finite region. We ha
calculated̂ K (2)

(2) & for the rangeQ50.05;1.0 while varying
the energyE and the coupling constantk. Figure 2 shows the
result of ^K (2)

(2) & versusQ obtained from the computation a
different values ofk50.1,0.5,1.0,5.0, and 10.0. The integr
^K (2)

(2) & is zero for smallQ,0.4 and begins to increase fo
01620
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s
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largerQ irrespective of the values ofk. The transition from
order to chaos seems to occur at almost the same valu
Q50.40;0.50.

Second we try to study whether or not the global struct
determined bŷ K (2)

(2) & is consistent with the result obtaine
by the conventional approach. The integral^K (2)

(2) & is essen-
tially related to the ratiom between the area covered by th
regular trajectories and the total area in the phase space
cessible to the motions. The ratiom is quantitatively deter-
mined by calculating the Lyapunov exponent of the syste
which is frequently used as a reliable indicator of chaos
the conventional and phenomenological approach. T
Lyapunov exponentl gives the average rate of the expone
tially fast divergence or convergence of two nearby trajec
ries in the phase space. A chaotic system correspondsl
.0, while a regular one corresponds tol50. Numerical
determination of the ratiom is done by using the fraction o
initial points leading to regular state,l50. This method has
some practical difficulties because the condition for a regu
state,l50, is not numerically realized in finite integratio

FIG. 1. Potential level contours for 0.05<Q<1.0 at k51.0.
The innermost contour corresponds toQ50.05 while the outermost
one corresponds toQ51.0.

FIG. 2. Plots of2^K (2)
(2) &/0.03 vsQ for the AH dynamical sys-

tem. The correspondence of a marker to a value ofk is as follows:
the triangle isk510.0, the square isk55.0, the circle isk51.0,
the diamond isk50.5, and the star isk50.1.
1-2



h

e
he

e

f

r

ro
ap

o

e

is
bil-
en
h a
JLC
as

d

ility

t
int
o
The
to

vary
es

tric
ain

te
ave

-
s a
ac-
is

er

-

the
t of
the
es

e
he
of
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time. Thus we need to assume that the value ofl is zero
whenever it becomes less thanlc , a certain value ofl after
sufficiently time evolution of the system. We tooklc
50.001 because we confirmed from many simulations t
all values of l,lc approach zero. For each value ofQ
50.05;1.0 we have computed the Lyapunov exponentsl
for 5000 random initial points. For each initial point w
made the 108 successive iterations. The calculation of t
ratio m was done for several values ofk. Figures 3~a! and
3~b! show the result ofm ~full dots! versusQ for the case of
k50.5 andk55.0, respectively. The ratiom exhibits almost
the same tendency in Figs. 3~a! and 3~b!: m stays 1.0 for
small Q,0.4, where the whole area in the phase spac
covered by regular trajectories. On the other hand,m begins
to decrease below 1.0 for largerQ, where the measure o
chaotic trajectories begins to increase. In Figs. 3~a! and 3~b!
we also put̂ K (2)

(2) & of Fig. 2 with a suitable scale factor fo
graphical reasons to compare withm. We see that̂ K (2)

(2) &
starts increasing at the same value ofQ at whichm begins to
decrease. Therefore we can confirm that^K (2)

(2) & brings the
same qualitative and quantitative information that is p
vided by the Lyapunov exponents in the conventional
proach. For the numerical integration for the equations
motion, we used a fourth-order Runge-Kutta routine with
time step,Dt, equal to 1022. We chose the size ofDt so that
any reduction of the size does not cause significant chang
the results.

FIG. 3. Plots ofm ~full dots! vs Q at different values ofk for the
AH dynamical system:~a! k50.5 and~b! k55.0. In order to com-
pare with m, the global indicator̂ K (2)

(2) & is also plotted with a
suitable scale factor.
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Third we study the mechanism of the instability of th
system. In the Riemannian geometric approach, the insta
ity is determined by the way that the separation betwe
nearby geodesics evolves with time. The evolution of suc
geodesic spread is described by the JLC equation. This
equation can be written in the form of the Hill equation
@8#

d2Y~ t !

dt2
1V~ t !Y~ t !50, ~8!

where

V~ t !5FDV1
3~¹V!2

2W G2
3

4W2 Fp1

]V

]q1
1p2

]V

]q2
G2

2
1

2W (
i ,k

]2V

]qi]qk
pipk . ~9!

Here DV5]2V/]q1
21]2V/]q2

2 is the Euclidean Laplacian
and ¹V5(]V/]q1 ,]V/]q2) is the Euclidean gradient, an
W5E2V(q1 ,q2). The quantityY(t) gives a measure of the
geodesic spread. This Hill equation determines the stab
of system. The unstable solutions appear when Eq.~8! satis-
fies the condition ofV(t),0. However, this condition is no
the only way to make unstable solutions. From the viewpo
of the nonlinear oscillation@11# we have another chance t
get unstable solutions through a parametric resonance.
instability due to the parametric resonance is expected
occur when the parameters characterizing the system
periodically in time. In this case the stable solution becom
unstable even if the system satisfies the condition ofV(t)
.0 for each value of the parameters. Since this geome
approach claims that the parametric resonance is a m
mechanism of instability, it is important to investiga
whether or not such a phenomenon indeed occurs. We h
calculated bothY(t) and V(t) for various initial values at
low Q ~ordered system! and at highQ ~chaotic system!. Fig-
ure 4~a! shows the absolute value of the envelopeuY(t)u for
Q50.05 atk55.0, whereuY(t)u presents a weak exponen
tial growth at an early stage of time evolution but become
constant in longer times. Since the regular motion is char
terized by a bounded or a linearly growing oscillation, th
behavior of Fig. 4~a! is reasonable. Figure 4~b! shows the
frequencyV(t) for the same values ofQ andk as those in
Fig. 4~a!, whereV(t) is positive as expected. On the oth
hand, Figs. 4~c! and 4~d! present the results forQ51.0 at
k55.0, where the envelopeuY(t)u is exponentially growing
while the frequencyV(t) stays always positive. The behav
ior of the envelopeuY(t)u in Fig. 4~c! is consistent with the
behavior of nearby trajectories used for the calculation of
Lyapunov exponents. Thus we can confirm that the onse
chaos in this Riemannian geometric approach is due to
parametric instability of the system which always satisfi
the condition ofV(t).0 as shown in Fig. 4~d!.

Fourth we consider the criterion on the stability of th
system. The stability connects with the curvature of t
manifold. In the geometric Riemannian approach the sign
1-3
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FIG. 4. Plots of the envelopeuYu and the frequencyV vs time for the AH dynamical system withk55.0: ~a! uYu and~b! V for an initial
value atQ50.05 ~ordered system!, while ~c! uYu and ~d! V for an initial value atQ51.0 ~chaotic system!.
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the sectional curvatureK (2) of Eq. ~4! determines the stabil
ity of the system: i.e., a stable state is realized ifK (2).0
while the instability occurs ifK (2),0. On the other hand
the stability of the system can be also determined by us
the Gaussian curvature defined by

G~q!5
]2V

]q1
2

]2V

]q2
2

2S ]2V

]q1]q2
D 2

. ~10!

This quantity is equivalent to the product of the eigenvalu
characterizing the two-dimensional flow in the tangent d
namics equation for the perturbed trajectories and the sig
G controls the time evolution of trajectories. If we have
region whereG is negative, so is one of the eigenvalues, a
for this negative eigenvalue the perturbed trajectory evol
exponentially with time. In this case the system exhibits
exponential instability in this region, such as the C syst
@6#. In order to see the possible relation betweenG andK (2),
we have calculated them for various initial values leading
regular trajectories or chaotic ones. Figure 5 gives exam
of the time evolution ofG andK (2). For the regular trajec-
tories bothG and K (2) always have positive values, as e
pected, as shown in Fig. 5~a!, while for chaotic ones they
01620
g

s
-
of

d
s

n

o
es

seem not to have any relation with each other at first gla
at Fig. 5~b!. However, from more careful observation of Fi
5~b! we find the fact thatK (2) becomes always positive whe
G is positive.

This observation can be supported as follows: In the A
dynamical system the stability matrix defined bymi j

5]2V/]qi]qj becomesm115q2
2, m225q1

213kq2
22k, and

m125m2152q1q2. Let us putmi j asa5m11, b5m22, and
g5m12. Since the potentialV(q1 ,q2) is symmetric under
q1→2q1 and q2→2q2, the phase space we should co
sider is confined to the first quadrant so thatg.0 holds. If
b.0, the sectional curvatureK (2) of Eq. ~7! can be written
as

2WK(2)5ap2
21bp1

222gp1p25~Aap22Abp1!2

12~Aab2g!p1p2 . ~11!

If p1p2,0, it is obvious from the second part of Eq.~11!
thatK (2).0, i.e., the system is stable. Ifp1p2.0, it is found
from the third part of Eq.~11! that K (2).0 holds as long as
the conditionAab2g.0 holds. This condition implies tha
the
1-4
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Gaussian curvatureG is positive because ofG5(Aab
1g)(Aab2g). This means that the stable conditionG.0
is a sufficient condition forK (2).0, i.e., G.0⇒K (2).0.
The contraposition also holds, i.e.,K (2),0⇒G,0, which
strictly holds as shown in the inset in Fig. 5~b!. This Gauss-
ian curvature has a direct connection with the Toda-Brum
criterion @12# for studying the stability of the dynamical sys
tem. The present analysis reveals that the Toda-Brumer
terion is a sufficient condition to the criterion based on
sectional curvature as to the stability condition.

Finally let us consider the meaning of the conditionb
.0. Since this condition gives the inequality asq1

213kq2
2

.k, the allowed region in the (q1 ,q2) plane is the outside o
the ellipse, whose major and minor axes are given
(q1 ,q2)5(2Ak,0),(Ak,0),(0,21/A3), and (0,1/A3). On
the other hand, from the equationV(0,q2)5E on the poten-
tial contour, we see that the physically allowed values ofq2

are confined to the region asA12AQ<q2<A11AQ for
0<Q<1. The above inequality implies the relation th
1/A3,(12AQ)1/2, i.e., Q, 4

9 50.444 . . .[Q* . Thus we
find that the system becomes stable whenQ,Q* so thatQ*
will be regarded as the threshold value of the transition fr
order to chaos. It should be noticed that this threshold va
Q* seems to be consistent with the value observed in Fig
which distinguishes between̂K (2)

(2) &50 and^K (2)
(2) &Þ0.

FIG. 5. Plots ofG ~solid line! andK (2) ~dotted line! vs time for
the AH dynamical system withk55.0: ~a! G andK (2) for an initial
value atQ50.05 ~ordered system!, while ~b! G and K (2) for an
initial value atQ51.0 ~chaotic system!.
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In conclusion, we have studied the dynamical propert
of the AH dynamical system from the Riemannian geome
approach. From the analyses on the global indicator^K (2)

(2) &
we have found that this system shows the transition fr
order to chaos for a wide range ofk and E satisfying Q
<1. The behavior of̂ K (2)

(2) & is completely consistent with
the behavior of the ratiom determined by the Lyapunov ex
ponents that have been used in the conventional appro
Especially the threshold valueQ* for the order-to-chaos
transition is almost the same in both approaches. Throug
detailed quantitative comparison between the Riemann
geometric analysis and the traditional one we have confirm
that the order-to-chaos transition is an inherent characte
tics of the AH dynamical system.

The above conclusion is based on the result that the qu
tity ^K (2)

(2) & obtained by computing the microcanonical ave
age of the sectional curvatureK (2) agrees with the ratiom
determined by using the values of the Lyapunov exponenl
for many initial conditions. This ratio is the fraction of th
numbers of initial conditions for whichl50 andl.0. Al-
though the numerical calculation ofl has been done for a
very large number of initial conditions, the amount of n
merical calculation is not enough to obtain the ensemble
erage from whichm can be determined. Nevertheless, in t
present analyses we have found thatm agrees witĥ K (2)

(2) &.
Thus we might claim that the ergodicity is not required wh
we estimate the relative weight of stable versus unstable
jectories such asm. Since the present analysis is restricted
the specific model of the AH theory, it is a very importa
issue to study whether or not this claim is generally valid
many dynamical systems.

We have also found the relation of the stochasticity cri
rion between̂ K (2)

(2) & and the Gaussian curvatureG, with the
aid of a concrete calculation ofK (2) in Eq. ~7! andG in Eq.
~10!. Since the Gaussian curvatureG provides the basis o
the Toda-Brumer criterion, it will be an interesting issue
derive a mathematical relation betweenG and K (2) more
directly from the definition of the Riemannian curvature te
sor, the Ricci curvature, and the Gaussian curvature and
to clarify a close link between the curvature of the manifo
and the stability of the trajectories.

The present work gives one concrete example show
that the Riemannian geometric approach is very effective
research on chaos in the Hamiltonian dynamical syste
with two degrees of freedom, where the dominant mec
nism of chaos is due to the parametric instability. It will be
very important issue to apply this approach to the hig
dimensional case@3# such as the YMH field theory with
space-time dependence whose magnetic monopole solu
has been shown to exhibit the order-to-chaos transition in
conventional and phenomenological analyses.
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